If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+96x-664=0
a = 4; b = 96; c = -664;
Δ = b2-4ac
Δ = 962-4·4·(-664)
Δ = 19840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19840}=\sqrt{64*310}=\sqrt{64}*\sqrt{310}=8\sqrt{310}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-8\sqrt{310}}{2*4}=\frac{-96-8\sqrt{310}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+8\sqrt{310}}{2*4}=\frac{-96+8\sqrt{310}}{8} $
| 4(x^2+24x-166)=0 | | x^2+36x+68=0 | | 9x2=12 | | 358.50=11.50x+25 | | 6(2x-11)=6 | | 2x(x-3)=5x-12 | | q-18/6=-5 | | -6(s+6)=-78 | | H=15b-21 | | 7t+15=12t | | 5x-x=22 | | (3x+7)/5=x+3 | | (72-x)/5=10 | | 2C+4d=2 | | 15y-18+78=0 | | t2-10t-54=0 | | 3x+16=4x+19 | | 22^x+5=64 | | 736+(g-123)=936 | | 28x-15x=-27+56 | | 2=27(5x+6) | | 5x^2-10+21=0 | | 3*3*3*3*3*x=69 | | 2x^2-6+9=12.5 | | 2x^2-6+5=8.5 | | 3^2=7-2x | | -30=-5(x+2) | | -3+6x+1=19 | | 4=18t-16t^2 | | 5+y/4=17 | | 3(4y-5)+14=2(2y+2)+17 | | 5(x+8)+3=-9(x-8)-6 |